AFRL-IF-RS-TR-2000-123
Final Technical Report
August 2000

THREE FINAL STEPS TOWARD PORTABILITY

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. F351

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

st 20001002 047




This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2000-123 has been reviewed and is approved for publication.

APPROVED: W

RALPH KOHLER
Project Engineer

FOR THE DIRECTOR: % ’4/ /;; 4

NORTHRUP FOWLER, Technical Advisor
Information Technology Division
. Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTC, 26 Electronic Pky, Rome, NY 13441-4514.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.




THREE FINAL STEPS TOWARD PORTABILITY

Craig Lund

Contractor: Mercury Computer Systems, Inc.

Contract Number: F30602-97-2-0271

Effective Date of Contract: 24 July 1997

Contract Expiration Date: 30 November 1999

Program Code Number:  F351

Short Title of Work: Three Final Steps Toward Portability
Period of Work Covered: Jul 97 — Nov 99

Principal Investigator: Crain Lund
Phone: (508) 256-1300
AFRL Project Engineer:  Ralph Kohler
Phone:  (315) 330-2016

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
This research was supported by the Defense Advanced Research

Projects Agency of the Department of Defense and was monitored
by Ralph Kohler, AFRL/IFTC, 26 Electronic Pky, Rome, NY.



Form Approved
REPORT DOCUMENTATION PAGE OB No. 07040188

Public reporting burden for this collection of information is estimated to avarage 1 hour per response, including the time for reviewing Instructions, ssarching existing data sources, gathering and maintaining the data needed, and completing and reviewsing
the collection of inf ion, Send regarding this burden estimate or any ather aspect of this collection of information, including suggestions for reducing this burden, to Washingtom Headguarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Adington, VA 22202-4302, and to the Dffice of Management and Budget, Paperwork Reduction Project {0704-0188), Washington, 6C 20503

1. AGENCY USE ONLY /Leave blank] 7. REPORT DATE 3. REPORT TYPE AND DATES COVERED
AUGUST 2000 Final Jul 97 - Nov 99
"4, TITLE AND SUBTITLE 5. FUNDING NUMBERS
THREE FINAL STEPS TOWARD PORTABILITY C - F30602-97-2-0271
PE - 62301E
PR - D002
6. AUTHOR{S} TA- 01
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES] 8. PERFORMING ORGANIZATION
Mercury Computer Systems, Inc. REPORT NUMBER
199 Riverneck Road
Chelmsford MA 01824-2820 N/A
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORIRG/MONITORING
Defense Advanced Research Projects Agency  Air Force Research Laboratory/IFTC| ~ AGENCY REPORT NUMBER
3701 N. Fairfax Drive 26 Electronic Pky
Arlington VA 22203-1714 Rome NY 134414514 AFRLAF-RS-TR-2000-125

11. SUPPLEMENTARY NOTES
Air Force Research Laboratory Project Engineer: Ralph Kohler/IFTC/(315) 330-2016

12a. DISTRIBUTION AVALLABILITY STATEMENT 12h. DISTRIBUTION CODE
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. ABSTRACT (Maximum 200 words)
A sofiware gap exists between the research and deployment communities. The research under this project is described by
two research projects that build upon the Application Configuration language (ACL) foundation. The first is the "ACL" for
Research Systems”, which focused on code migration from research environments like NHPCC's into deployment situations.
The underlying component programming model Mercury had advocated promotes the re-use of software modules and
maintainability of large software projects. The second: "entering the Data Domain”, created a standard API for real-time
data shaping and data mapping - gluing the MPI and ACL worlds together in an innovative manner; eliminating the need for
custom solutions. An industry standard data remapping API for signal processing has resulted from this effort. Recent
progress towards standard programming tools and Application Programmer Interfaces (APIs) brings the embedded signal
processing community closer to application source code portability. Portability will enable sharing code among signal
processing projects and will allow applications to quickly take advantage of hardware from new vendors.

14_SUBJECT TERMS 15 NUMBER OF PAGES
Talaris, Scalability Challenges, Unix Launcher, RACE Generator Tool, Application 56
Configuration Language, Automatic Mapper 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT PBSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

Standard Form 298 3@“' 2-39} {EG)
Prascribed by ANS Std. 239.18
Designed asing Pestorm Pra, WHS/DICR, Oct 94




1.0

2.0

3.0

4.0

5.0

6.0

[A]

Figure

1

Table of Contents

Executive Summary

Introduction

Mercury Program Participation

MHPCC Program Participation

MSTI Program Participation

Summary and Future Research

Appendixes

Final presentation and demonstration at DARPA PI meeting

(PowerPoint Presentation)

List of Figures

Talaris environment as a framework for component programming

2 Representation of Modules, Parts and Connections

13

18

26



1.0 Executive Summary

This final report summarizes the results of research, that Mercury Computer Systems, Inc.
MPI Software Technology (MSTI), the Albuquerque High Performance Computing
Center (AHPCC), the Maui High Performance Computing Center (MHPCC), and the
Naval Command, Control and Ocean Surveillance Center (NCCOSC) Research,
Development, Test and Evaluation Division (SPAWAR) performed on the “Three Final
Steps Toward Portability” program. The program was supported by the Defense
Advanced Research Projects Agency (DARPA) under BAA 97-06, entitled “Adaptive
Computing Systems, Embedded High Performance Computing and Ultrascale

Computing”.

A software gap exists between the research and deployment communities. Software
created by researchers is rarely leveraged when primes contractors build real-time
prototypes or deploy embedded systems. This is because the research and deployment

communities use different tools, languages, and operating systems.

Recent progress towards standard programming tools and Application Programmer
Interfaces (APIs) brings the embedded signal processing community closer to application
source code portability. Portability will enable sharing code among signal processing
projects. Portability will also allow applications to quickly take advantage of hardware
from new vendors. The resuit will be faster development cycles, at lower cost, with more

functionality.

Barriers to portability have continued to fall. One significant obstacle remains—mapping
parallel software onto real hardware in a portable and productive way. Fortunately,
Mercury Computer Systems, in collaboration with many commercial and academic
organizations, has had a successful research program focused on productive, portable
mapping techniques. The team members, as indicated above, have sought to push this
research collaboration in two new directions. Our push attacked the last barriers to source

code portability between real-time, deployment environments.




Our collaboration’s past work in this area, centers on a language called “ACL"! for
Application Configuration Language. ACL allows a programmer, or a programming tool,
to specify a software structure, a hardware structure, and the mapping between them. The
ACL language is general enough to incorporate arbitrary, legacy software—both unlinked
modules and complete applications. Existing ACL tools such as The MathWorks’
SIMULINK, Matra’s CapCase, and Mercury’s TCE allow users to describe software
requirements, specific hardware configurations, and arbitrary mappings. In the hands of a
programmer, the ACL language is powerful enough to go beyond expressing complex
mapping algorithms. ACL can also capture fault recovery strategies, potentially allowing

software to remap around hardware failures.

This report describes two research projects that build upon this ACL foundation. Each
project was performed independently. Combined, the projects knocked down significant

barriers to source code portability within parallel, real-time, deployment environments.

» The ACL for Research Systems project focused on code migration from research
environments like MHPCC’s into deployment situations (we needed this project if only to
allow use of Mercury’s previous MATLAB deployment effort within the MHPCC STAP
community). The underlying component programming model Mercury has advocated

promotes the re-use of software modules and maintainability of large software projects.

* The Entering the Data Domain project created a standard API for real-time data
shaping and data mapping—gluing the MPI and ACL worlds together in an innovative
manner; eliminating the need for custom solutions like Mercury’s Parallel Application
System (PAS) and SPAWAR'’s Scalable Parallel Environment (SPE). An industry
standard data remapping API for signal processing has resulted from the (still continuing,
independent from this contract) effort, again creating and stimulating improved code

portability.

! For ACL overview materials, reference, and tutorial, see:
e www.mc.com/talaris_fold/talariseet.html
¢ www.mc.com/backgrounder_folder/icassp/icassp.html
e www.mc.com/talaris_fold/talaris/slideO.htmi



ACL for Research Systems

Mercury’s implementation of ACL is named “Talaris” (Figure 1). Most of Talaris
executes on a workstation. An portion of Talaris, called the “Generator”, is specific to
each run-time target. Generators create “Launch Kits”. Most targets require small, stand-
alone programs, called “Launchers”, to execute these Launch Kits. A Generator and
Launcher already exist for Mercury’s MC/OS operating system on i860s, SHARCs,
PowerPCs, as well as for Wind River’s VxWorks on a 68000. At the start of this project
no organization had yet elected to build a UNIX Generator and Launcher.

ssarcher/Divelopar tsing
MATLAB, G, Assembly ...

Figure 1. Talaris environment as a framework for component programming.

UNIX Shared-Memory Processor (SMP) boxes do not often encounter the scalability
challenges that ACL was designed to meet. Scalability challenges refering to the
problems associated with mapping an unchanging application between multiple hardware
configurations in a deployment situation. Various defense platforms, for example, may
be in different stages of an upgrade cycle, resulting in several hardware configurations
that a single application must tolerate. Also, laboratory configurations very often differ
from field hardware configurations. These are examples of problems ACL was designed

to resolve.



UNIX boxes are a convenient place to experiment with code that will ultimately find its
way into embedded environments. This fact made ACL interesting in such environments.
MHPCC, for example, wanted to experiment with ACL in the UNIX research phase of

projects with deployment potential.

There is yet another reason for creating a UNIX Launcher. Tool vendors, such as Khoral
Research (KRI), target both embedded and traditional applications. ACL for UNIX
would simplify creating such tools by eliminating a key difference between embedded

and scientific platforms.

We actually required two different UNIX launchers, one variant targeting MPI
middleware within interactive workstations clusters from Sun and IBM. The other targets
MPI within the IBM-SP batch environment.

Entering the Data Domain

Existing DARPA investments in ACL and MPI represent a significant step towards
portable signal processing software. Unfortunately, one critical API layer remains
undefined. Signal processing programmers need an API that is focused on data *shape”.
Here we refer to the patterns that programmers use to scatter data sets between memory
systems within a distributed, parallel, hardware environment. Signal processing
programmers need an API that can “transpose” data rows and columns, not just a message

passing APL

Visual signal processing tools also require such an API. Like programmers, visual tools
that target signal processing “think” in terms of data flow and shape, a model MPI and

MPURT are not optimized for.

Our developed Data Reorganization Interface (DRI) API is something ideally layered
“above” MPI/RT. However, any runtime that supports a shape-oriented API faces a

significant algorithm/software/hardware mapping challenge — ACL’s domain.



Thus our team wanted to define a data shape/remapping API that can leverage both
MPI/RT and ACL. Our team wanted to cooperatively study the issue. Mercury intends to

promote the team’s conclusions throughout the DoD signal processing community.

Our team had planned to leverage the development of a MPI/RT specification for
“transpose and reshape,” whose purpose was to introduce an early-binding form of data
reorganization into MPI/RT. Participants have pushed for the addition of “early binding,

collective redistribution” into MPL

Our team has not asked DARPA, during the program or at this time, for help building the
first implementation of our new APL This is because, since we were successful at
building consensus, we believe that platform suppliers like Mercury will create

implementations at their own expense.

Conclusion

A third element of the originally proposed program, as indicated in the project’s name
was unfortunately not funded under this effort. In it, as a continuation of the DARPA
BAA 95-19 Mercury’s “Bridging the Development Gap” contract, our team was to define
an API specification for mapping algorithms, and implement a tool that can call these
interchangeable mapping algorithms to accomplish mapping. The software and hardware
specification for this tool was to be ACL. KRI was originally proposed to build the

Automatic Mapper as an enhancement to Mercury’s TCE.

The completed and reported effort has shrunk the percieved software gap by creating
standards and a tool infrastructure that the research and deployment communities can
share. Our work has been intensitively focused on parallel programming and on

multicomputer data mapping challenges specific to signal processing.



2.0 Introduction

This final report describes recent research and development work related to BAA 97-06
that has significantly improved developer productivity for parallel programming of signal
processing applications today, while laying the groundwork for dramatic advances in the

future.

Mercury’s ACL is a language that allows programmers to treat legacy software object
libraries as software components with defined interfaces (stack frames, POSIX sockets,
MPI/RT channels, and so on). Using ACL, programmers can express how they wish to
interconnect software components into a complete application. ACL can capture similar
information on target hardware configurations. The real power of ACL is its ability to
then express how to map a software concept into a hardware reality. Because ACL is a
complete programming language based upon the popular TCL, such mappings can be

algorithms that react to change when, for example, hardware fails.

Mercury’s TCE is a tool “framework” with plug in extensions that manipulates ACL.
TCE, developed under a previous DARPA contract, runs on workstations. Team

members have implemented many of the project elements as TCE extensions.

ACL for Research Systems

An ACL environment already exists for Mercury’s MC/OS environment and for Wind
River’s VxWorks. Spectron is working to add ACL support to its SPOX-MP. Extending
Mercury’s tool suite to support each new target requires that someone develop a new
“Generator” for each target. Most environments also need a corresponding “Launcher”
which executes on the targets (see Figure 1). Mercury is to implement the new

Generators as extensions to TCE.

Generators emit “Launch Kits.” A Generator understands its target’s capabilities (such as
shared memory and sockets), the target’s operating system services, and the target’s

development tool chain.



Launchers processes Launch Kits at runtime. Launch Kits contain a description of which
object files a Launcher must load onto each target processor. Kits also describe resource
requirements such as interprocess communication objects that Launchers must establish

before handing control over to a user’s application.

Developing a Generator and Launcher for each new target requires tackling several
challenges that are not immediately obvious. First among them is that UNIX or MPP
platforms are rarely dedicated to a single application. Therefore, the ACL Launcher will
not have control of the entire platform. Our new Launchers will need to request resources
(processors, memory, or workstations) from a higher authority, a concept not built into
original Launcher implementations. We have developed Launchers and Generators for

three new target environments:

e POSIX Reference Implementation. This provides a UNIX reference implementation
of ACL that leverages the POSIX API (i. e. shared memory, semaphores, sockets,
threads) running on an SMP SPARCstation using Solaris 2.x. From this starting paint
other organizations can create ports to other POSIX environments.

o  MPI Reference Implementation. This provides an MPI reference implementation
based on a cluster of Sun Workstations using MPICH. This reference implementation
provides a starting point for future MPI-based implementaﬁons of ACL.

e IBM SP-2 Implementation. Starting with the MPI Reference Implementation
described above, MHPCC has provided enhancements to support an IBM SP-2 using
IBM’s MPL

We have made these enhancements by changing the Talaris tool chain in a significant
way. Today Talaris has a single “Generator” component which creates the “Launch Kits”
that Launchers execute. Mercury’s experience with Spectron’s ACL work has shown that
a better approach is to have a separate generator for each target environment (MC/OS,
VxWorks, SPOX-MP, POSIX, MPI). After consuilting with Mercury, Spectron had
suggested that Mercury expose the toolbox inside the TCE that manipulates ACL.
Mercury calls ;his Java toolbox the Configuration Model Interface (CMI). Mercury has



adopted this approach. We first created a generic generator designed to supplant our
existing generator. We then created two variants, one for POSIX and another for MPIL.
Because of the way in which TCE was written in the Java programming language, the
new generators became Java Beans. (An introduction to Java Beans technology can be

found at <http://splash.javasoft.com/beans/WhitePaper.html>).

Entering the Data Domain

Our team did not intend to define a data shaping/remapping API without focusing much
of our time initially on the runtime system that sits underneath the APL. This is because,
when a program requests a data remap, the runtime system must query the
software/hardware map to determine how many memory systems are involved. This fact
implies that significant data movement decisions must be made after compile and link
time. Making decisions this late is a challenge because “early binding” is a key
foundation of performance in all real-time systems. The most flexible solution requires
making all data movement strategy decisions at runtime. The highest performance
solution requires making such decisions just after the map is known, but before execution

begins.

At the start of the program existing APIs do not allow the latter approach. Existing data
shape/remapping APIs focussed on either flexibility or performance, but rarely on both.
KRI’s Distributed Data Services was one extreme example. It is very flexible at run time,
but there is no hope of ever fitting it into a DSP chip’s high performance, restricted
resource environment. Mercury’s PAS was at the opposite extreme: a very targeted
feature set that fits into a SHARC, but with little runtime flexibility. Neither example

integrates well with MPL

The community needed something better. In this program we studied high performance
options and then publicly proposed solutions to the embedded community. The team will

declare success only after we have build broad consensus in the community.



3.0 Mercury Computer Systems Program Participation

In Mercury’s approach to component programming, a software application is expressed as
an interconnection of software Modules that executes on a configuration of hardware
Modules. A software Module consists of executable code that operates on data and
commands via one or more Ports of the Modules. Interconnections of Ports between
Modules are Connections. Graphically, the relationships of Modules, Ports, and

Connections are shown in Figure 2.

Ports Connection

Module

Figure 2. Representation of Modules, Ports and Connections

In the RACE implementation, Modules are POSIX threads or processes, Ports are various
types of protocols (e.g., message passing, synchronization, and shared-memory
application programming interfaces (APIs)), and Connections are objects that attach to
Ports. Hardware Modules consist of processors and their memory systems, the interface
to the processor, and the connection of interfaces (e.g., connection to a shared bus or

point-to-point fabric).

ACL

Mercury has developed an underlying run-time system that supports a component
programming model. Such a run-time system processes a "netlist” which specifies the
interconnection and processor assignments of software modules available as object code.
From the netlist, the runtime system synthesizes the required executable images, loads the
images into appropriate processors, sets up the "interconnections” as inter-process

communication objects, and begins execution of the application. The underlying "netlist”



specification is actually a scripting language. Specifically, we have created a specialized
Tool Command Language (TCL) extension package that we call ACL (Application

Configuration Language).

Talaris

Mercury has also created a powerful environment for cooperating tools that better support
the development of complex applications. Implemented in Java, the Talaris Environment
is very portable and extensible. It is being applied to an increasing range of target systems

and programming interfaces.

Talaris Modeler -- The Model is controlled by a transaction engine called the Talaris
Modeler that manages and synchronizes (in real-time) both the Model and the
corresponding ACL command source. The Modeler is equally at ease with the ACL
source form of the Model and the underlying Model itself, with its computed entities and
relationships. Because the Modeler supports a Model-View-Controller architecture, all
views of the Model — including the ACL command form — are constantly synchronized as

the contents of the Model are changed.

Talaris Tools -- On startup, the Environment uses initialization settings to establish the
semantics of the Model, the number and names of Model domains, the initial type
hierarchy, and the selected target system. The developer proceeds to open, edit, and save
ACL documents with Editing Tools. When the configuration is complete, the developer

uses Target Tools to build and launch the application on a specific target system.

Mercury’s RACE Generator Tool -- To create applications to launch on RACE

systems, Mercury’s RACE Generator Tool builds a launch kit in a sequence of four

phases:

e Analysis — scan the Model, resolve ambiguities and other defaults, perform
initialization deadlock analysis

e Files — create all the input to the launch kit, initialization instructions, dependency

file, dispatch tables

10



Build - compile dispatch tables, build the executable images

Kit — create a launch kit from the output of the files and build phases. To reduce the
time required to create a launch kit, the Generator computes the minimum build plan.
The analysis and files phases are done only if the model has changed, the build phase
is done only if its inputs have changed, and the kit phase updates the final kit contents
only if the build phase resulted in changes. This enables fast turnaround during kit
generation as well as during launch, because redundant image-loads are thereby

avoided.

Mercury’s RACE Launcher -- Mercury’s RACE Launcher starts applications on RACE

systems in four steps:

Image load. Note that a sizeable application may involve several hundred megabytes
of executable images being loaded onto hundreds of processors. Using features of
MC/OS, the RACE Launcher avoids reloading images that have not changed since the
last launch.

Process and thread creation. The Launcher constructs argc/argv/env data for
processes and marshals arguments for thread entry points.

Initialization. To start properly and without deadlock, a complex application requires
precise setup of thousands of software communication mechanisms. The Launcher is
able to do this in coordinated phases, avoiding possible deadlock conditions in a
highly orchestrated communication protocol between the Launcher and small agent
modules that have been placed in each process by the Generator.

Initiation. With all initialization complete, the Launcher releases threads and starts

processes.

With this infrastructure, application development is equated to building a fully specified

and populated application model in the Talaris Modeler. A fully specified application

model contains:

e A system hardware model that expresses the instances of hardware Modules and

their interconnection.

-

11




e A software model that expresses the instances of software Modules and their
interconnection.

e The assignment of software Modules to hardware Modules.

A fully populated model means that object files (i.e., a “.0” file or library entry) exist for

each software Module (for the assigned hardware Module type) and the hardware exists.

Program Accomplishments

Mercury has modified the Launcher from its initial ACL tool suite. Mercury has also
modified the initial Talaris “Generator” scheme to allow targeting the new Launchers.
The resulting derivative work leveraged into POSIX and MPICH running over a network

of Sun workstations. The following steps have achieved this goal:

e Mercury has written a detailed project plan that described how Mercury planned to
extend its initial ACL tool suite to support UNIX workstation clusters running POSIX
and MPICH.

e Mercury has organized a meeting of a subset of the team to review the project plan.
Mercury has updated its plan to reflect comments from team members.

e Mercury has made source code modifications as called for in the plan and written
documentation. The result was an “alpha” quality binary release that Mercury has
made available upon request. For the next six months Mercury accepted, and acted
upon, bug reports received from users. Mercury has made multiple binary releases
during this period. At completion, Mercury has elevated the release’s quality label

from “alpha” to “beta”. A CD-ROM distribution is available upon request.
After the Sun binary release reaches beta quality, Mercury has turned all source code we

believed necessary over to MHPCC. MHPCC has used that to port the source code to its
IBM SP-2 which runs IBM’s MPI (see next Section).

12



4.0 MHPCC Program Participation

Existing Mercury and DARPA investments in software tools for embeddable computing
have resulted in substantial improvement in the portability between Mercury embedded
solutions and UNIX based architectures. A complete porting solution involves the
integration of a number of standardized software components such as the Message
Passing Interface (MPI and MPI/RT), Vector Signal Image Processing Library (VSIPL),
and the Application Configuration Language (ACL). MHPCC has been supporting
Mercury’s efforts to provide a transition path by supporting the development of an
Application Programmer Interface (API) through the Entering the Data Domain task and
through the port of the Application Configuration Language (ACL) to the IBM SP

architecture.

The Application Configuration Language (ACL) is a mechanism for describing the
interconnection of software components on embeddable hardware utilizing an abstraction
that isolates computational software modules from the details of hardware
interconnection topology. ACL facilitates the utilization of legacy software libraries in
multiprocessor architectures by providing a reconfigurable mechanism for mapping

software processes onto hardware structure.

Program Accomplishments

Talaris/ACL was successfully migrated to an IBM workstation at AHPCC and to multiple
interactive IBM-SP nodes at MHPCC. The Talaris/ACL port is fully functional using
MPICH/P4 on the Ethernet communication fabric. A number of Talaris example
programs have been successfully compiled, generated, and launched on both an IBM
RS6000 workstation at AHPCC, and on multiple interactive IBM-SP nodes at MHPCC.
These examples utilize a variety of transport types including System V shared memory

and semaphores, sockets, and MPL

A number of modifications to the launcher, agent, and generator code were required in

order to complete the Talaris/ACL port to the AIX environment. Changes were also

13




made to the ACL files for the Talaris example programs in order to make them work

under AIX. These modifications are summarized in the following sections.

Talaris Modifications for SP2

Launcher and Agent -- The few problems encountered in migration of the launcher and
agent C-language code to the AIX environment were difficult and time-consuming. One
problem arose from the fact that the order of stack evaluation for the C-language is not

specified in any standard. Thus, procedure calls with formal arguments of the form

status = pthread_create(&array[i++], &value, &arrayfi]);

can produce different results depending on whether the formal arguments are evaluated
left-to-right or right-to-left. The solution was to remove the order of stack evaluation

dependency from procedure calls in the agent and launcher code.

A second problem arose from the fact that Solaris 2.6 pthreads are based on the Version
10 standard whereas AIX 4.2 pthreads are based on the Version 7 standard. The default
behavior for Version 10 pthread creation is to make threads non-detachable (joinable),
whereas the default behavior for Version 7 pthread creation is to make threads detachable
(non-joinable). Talaris/ACL pthreads created by the launcher and agent are assumed to
be joinable, which is not the default behavior of pthread creation under AIX 4.2. The
solution was to issue a call, after pthread attribute initialization, to explicitly set the

pthread detach-state.

The last problem arose from the fact that the AIX 4.2 sockaddr struct type is slightly
different in content and size, from the BSD4.3-compatible Solaris sockaddr struct. This
difference was causing the agent socket code to truncate socket pathnames by a single
character. The system error message produced by this was a very misleading “error -
socket address in use”. The solution was to specify a switch -DCOMPAT_43 on the
agent compiler line, which instructed the compiler to utilize a BSD4.3-compatible

sockaddr struct.



Once these three final changes were made, the launcher and agent code began to work

under the AIX operating system on both RS6000 workstation and IBM-SP nodes.

Generator -- At present, the existing generator is being coerced into producing AIX
compatible executables by overriding the behaviors associated with the native compute
node type SOLARIS_NODE. This was accomplished by:

(1) Adding the statements
set_property SOLARIS_NODE -compiler_tool xlc_r
set_property SOLARIS_NODE -linker_tool xlc_r
to the global util.tcl file in the example program directory.

(2) Establishing the following soft-links in the /usr/mercury/talaris/utp/lib directory

libpthread.a  -> /usr/lib/libpthreads.a
libposix4.a  ->/usr/lib/libxnet_r.a
libnsl.a-> /usr/lib/libnsl_r.a
libsocket.a  ->/usr/lib/libc_r.a

so that the generator linker line for the SOLARIS_NODE type
$(CC) .... -lagent -lpthread -lposix4 -Insl -lsocket

would, in effect, produce the equivalent of the following for AIX
$(CC) .... -lagent -lpthreads -lxnet_r -Insl_r -lc_r

(3) Establishing the following soft-link in the /usr/mercury/talaris/utp/lib directory
libmpi.a -> /usr/local/mpicly/..../rs6000/1ib/libmpich.a
so that user applications using MPI will link the MPICH/P4 library.

A new node type, AIX_NODE, was introduced to the Talaris Unix Target Package (UTP).
The changes introduced to the Java code will require a compile/rebuild of the Talaris
generator. Because of the loss of key developers and the lack of any previous Makefile to
use as a template, rebuild and test of the Java code changes was not completed. Once

completed, user applications will only need to specify the AIX_NODE type in their ACL




code in order to generate AIX-compatible code. Thus, the temporary workarounds
involving SOLARIS_NODE overrides will not longer be needed.

Example Program Common Makefile and ACL File Modifications -- Minor
modifications were made to the common.mk make dependency file in the Talaris
examples directory to make use of the thread-safe compiler and pull in the appropriate
header files for the MPICH/P4 libraries. For reference, the CFLAGS were defined as

follows:

CFLAGS = -g —qchars=signed —qfold —qlangvl=ansi \
-D_ALL_SOURCE -D_XOPEN_SOURCE_EXTENDED=1 \
-D_COMPAT_43 -DAIX -DOSV=42 -I/usr/local/mpich/include

The mpich include path, specified here with the —I switch, may be different at different

sites.

The individual example ACL_TCL files were modified to utilize transport pathnames
compatible with the local AIX environment. That is, transport pathnames of the form
/UTPt00bsoc, that require root permission under AIX, were replaced by pathnames of the
form /nfs/sigpro/b at AHPCC, and by pathnames of the form /scratch4/t00b at MHPCC.
The pathnames must refer to nfs-mounted partitions, for accessibility by multiple
processors. The pathnames were limited to 14 characters for maximum compatibility

across operating systems.

Finally, for the examples (t08 through t13) that utilize MP], the following conditional was

added to accommodate a missing define under AIX.

#ifndef MPI_CHARACTER
#define MPI_CHAR MPI_CHARACTER
#endif



Talaris Installation on the SP2

The alpha release of Talaris for the SP2 is set up using the Solaris version installation,
which is then modified using an instruction sheet for the SP2 environment. At such time
as the Generator modifications to support the AIX_NODE flag are compiled and tested,
references to “borrowing” the SOLARIS_NODE definitions will be deleted.

Talaris Limitations on the SP2 -- The alpha release of Talaris for the SP is configured
to use MPICH 1.1 or 1.2, rather than the native AIX MPI implementation. The test cases
have not yet been run with the compiler flags set to use the fast switch in user space. This
results in inter-node communication running over Ethernet in IP space, which has

considerably lower bandwidth.

Talaris is unable to run jobs in batch mode. Talaris replicates much of the functionality
of IBM’s SP2 Parallel Operating Environment (POE). The POE consists of a set of
software components for developing, compiling, executing, debugging, profiling, and
tuning parallel programs. A typical SP user will have a number of POE environment
variables set via C shell scripts, none of which are applicable to Talaris. In addition, both
IBM’s Load Leveler and MHPCC’s Maui Scheduler work with POE to control the batch
job queues. Preliminary investigation concluded that modifying Talaris to support batch
mode would require a significant development project on its own, and likely necessitate
disabling POE and Load Leveler.

Presentation at Embedded Processing Principal Investigator Meeting at MHPCC
Joe Fogler of AHPCC, Karen Lauro and Henk Spaanenburg of Mercury during a
DARPA-sponsored Embedded PI meeting in Maui the week of March 15, 1999 assisted
with the installation and configuration of a Talaris 2.1 Beta demo on a pair of SPARC
machines running Solaris 2.6 at MHPCC (see Appendix A for the presentation).

The results of the MHPCC work are now available on their internal web site, including

on-line documentation, source code, and executables.



5.0 MSTI Program Participation
The “Entering the Data Domain” effort under DARPA support of the Mercury “Three

Final Steps to Portability” program has achieved significant results and has focused
community effort on Data Reorganization Interface (DRI) issues. This effort is concerned
with the issue of data reorganization for datacubes, and has specifically created the
“DARPA Data Reorganization Forum,” with attendant standards draft document?,

informative web pages, and has met regularly during the program3.

MPI Issues

The original MPI functions for “all-to-all” were unable to handle general, non-square
single-group remapping, and omitted dataflow remapping. MPI-2 corrected this in part,
but failed to provide early binding. MPI/RT (“MPI/RT - An Emerging Standard for
High-Performance Real-Time Systems”, A. Kanevsky, A. Skjellum, A. Rounbehler,
Proceedings of the 31* Annual Hawaii International Conference on System Sciences,
1998) corrected the lack of early binding. However, MPI/RT's definition also recognized
that the level of abstraction needed for efficient transpose and reshape needed a different
APL This API would offer the interface for MPI/RT programmers to get the benefits of
early binding. However, none of the benefits of mapping are guaranteed. This has been
studied from two respects. First, the quality of service specifications for all MPI/RT
collective operations can conceivably be extended to include mapping hints. Second, the
types of quality of service offered for MPI/RT collective operations can be augmented
appropriately. In addition, the notion of adding quality of service or other constraints to
the spawning commands of MPYRT (drawn from MPI-2) can be used to help guide

system choices that will later enable quality of service to be realized.

Documentation of the type of transpose and reshape extensions appropriate to Entering

the Data Domain has been undertaken. Furthermore, the efficacy of the “MPI/RT

2 Data Reorganization Interface Bindings, MPI Binding Specification, and Draft DARPA Data
Reorganization Development document.

3 Meetings in Boston, MA (05-Nov-97), Albuquerque, NM (13-Jan-98), Boston, MA (05-Mar-98),
Starkville, MS (21-May-98), Boston, MA (25-Sep-98), Bedford, MA (01-Dec-98), San Diego, CA (02-Feb-
99), Moorestown, NJ (11-Jun-99)

18



datacube reshape” has been reviewed by the forum participants, and common application
use scenarios have been connected with the interface, and have been graded for efficacy

and ease-of-use.

The general permutation mappings of the MPIRT transpose and reshape has been
considered for application situations well known to KRI, Mercury, and SPAWAR, and
MSTI. MSTI has considered possible generalizations to these permutations, when and if

appropriate.

Entering the Data Domain

Application programs that perform data parallel operations for signal processing require
data flow between memory systems within a distributed, parallel hardware environment.
Often, successive algorithm stages require the reorganization of data as it flows in
pipelined fashion between processing elements. The Message Passing Interface provides
a unified API for the simple movement of data but does not address the concept of data

shape and the need for reorganization of data shape.

The purpose of the Entering the Data Domain task was to address a critical need for a
unified Application Programmer Interface (API) that describes software dbjects and
methods for the movement and reorganization of distributed data shapes. This API
defines a software layer that builds upon existing interprocess communication (IPC)
middleware such as MPI, and prov‘ides a higher-level interface to simplify the

development of parallel distributed signal processing applications.

Although MPI is sometimes viewed as the focus of development, the data reorgamization
interface API being developed is actually much broader in scope and is intended to serve
as a guide for software development involving other IPC middleware including MPI/RT,
VIA, PAS, and others. MSTI plans to implement the Entering the Data Domain

extensions as part of its commercial MPI offerings.

19



Program Accomplishments

MSTI undertook a series of standardization meetings as specified by the statement of
work, to bring together members of the embedded and parallel processing community in
order to define and standardize a set of procedures (syntax and semantics) for data-
reorganization of datacubes. This set of services is a key technology for in-place and out-
of-place parallel computations for important classes of signal and image processing of

relevance to US DOD and other areas, such as medical imaging.

Key accomplishments are as follows: development of a meta-API specification for
describing important data-reorganization primitives, extensive discussions on how to
integrate these with MPI-1.2 and MPI/RT, and an expansion of research and practical
knowledge concerning the state of the art in expressive primitives for data reorganization.

The documents describing this work, together with the minutes of the meetings, are

posted at , www.data-re.org; this site will be kept active indefinitely by MSTI in order to

continue promotion of the area.

The documents as currently developed offer an initial set of meta-API instructions that
can be specialized for a number of message passing systems. Specific proposals have
been made thus far on how to do this specialization for MPI-1.2 (as extensions).
Approaches for doing the same type of specialization for MPI/RT have not been
developed, but are closely related to the approaches to be followed for MPI-1.2
extensions, with certain exceptions that make sense to hash out within the MPI/RT

Forum, rather than within the Data Reorganization Forum.

The body of knowledge developed addresses a low-level API, one that works with objects
and permutations on index sets for tactile matrices and vectors. It has been determined
through the course of this research effort that a competing, high-level tensor approach is
also possible, either as a complement or in lieu of the low-level implementation. It has
generally been agreed that the tensor approach is a good topic for future research, and
needs to be strongly correlated with any parallel extensions for VSIPL. Literature in the

area of multi-dimensional FFTs suggests that vector, parallel, and superscalar multi-

20



dimensional FFTs must be closely linked to the data reorganization problem in order to
achieve optimal performance (e.g., Tolimieri 1997). In this sense, the committee has
restricted itself to the low-level meta-API, recognizing that much more work is needed to

achieve a high-level meta-API as well.

The low-level meta-API is capable of describing in place and bi-partite corner turn
operations for N-dimensional dense data objects, where N is limited to six-dimensional in
the current draft. This arbitrary limitation was done based on expediency and perceived
application needs at this time. The data distributions and conformations supported reflect
both explicit and implicit indexing strategies commonly in use in the High Performance

Computing community.

The documents as currently developed are supplemented by a set of minutes and
proposals that form the entirety of the results thus far. and together form the body of
knowledge created. Because competing ideas remain about instantiation of the meta-API,

this remains work for the future.

Despite completion of this DARPA program’s tasks, this effort is going to continue on a
pro bono effort for at least an additional year, held in conjunction with MPI/RT and
VSIPL meetings. The purpose of the continued meetings are as follows: to see specific
instantiations of the meta-API introduced into a future revision of the MPI/RT standard,
and to explore relationships with any parallel VSIPL that emerges (since data
reorganization and parallel FFTs are strongly correlated). These efforts are beyond the
scope of the orginal task descriptions under this contract, but are being undertaken by a
set of volunteers because of the perceived extreme value of the Data Reorganization

effort to the High Performance Embedded Communiry.

The working group was chaired initially by Anthony Skjellum, who later added Ken Cain
of MITRE. as co-chair, given his strong involvement. Other key contributors are Jon
Greene (Mercury Computer Systems), James Lebak (MIT Lincoln Labs), and Nathan
Doss (Lockheed Martin GES).

21



6.0 Summary and Future Research

The following sections summarize our findings and products, and also introduces new

elements in the programming environment for portability.

ACL for Research Systems

Mercury will make the new generators and launchers available to anyone who asks, at no
cost (with the possible exception of reasonable media and administrative fees). The
generators are extensions to TCE (TCE is available thanks to a previous DARPA con-
tract). The new Launchers are small programs specific to the platform they target (i. e.
Sun MPICH and IBM MPI). This proposal, combined with Mercury’s previous DARPA
contract, makes large portions of TCE, and a portable implementation of ACL, available

to anyone who asks, at no cost beyond potential media and administrative charges.

However, an important part of both TCE and Portable ACL remains untouched by
DARPA investment. We call this item the “Modeler.” 1t is the core of both tools and
represents a significant Mercury investment. We offer access to the Modeler as an in-
kind, cost sharing contribution. This means that Mercury will make Modeler binaries
available to anyone who asks, providing that person is engaged in non profit, DARPA-
sponsored research. Mercury may demand a reasonable royalty from people who plan to

commercialize our Modeler code.

Operating system vendors can use this code to quickly incorporate ACL functionality into
their offerings. In addition, tool vendors may use this source code to layer ACL

functionality onto operating systems that do not offer ACL.

MHPCC could have delivered the IBM SP-2 generator and launcher to KRI where it
could have been combined with the output of the originally proposed, but not funded by
DARPA, An Automatic Mapper project into a mapping and launching tool suite.
MHPCC would have coordinated and established acceptance criteria with KRI to insure

the port meets KRI's software standards and conforms to KRI's software environment.

22



An Automatic Mapper
The Automatic Mapper task has been proposed to provide an extensible framework in
which to develop and characterize algorithms for mapping software systems onto

hardware.

Mapping can be described most succinctly as a process in which a software system is
mapped onto available hardware such that a performance-motivated objective function is
optimized. Algorithm mapping for embedded systems is a non-linear optimization
problem that depends on memory consumption and communication latency among other
factors. Automatic mapping employs the user of an algorithm to perform the mapping
without manual intervention. The appeal of automatic mapping is that it eliminates an
often-repeated, time-consuming task from the algorithm developer and thus reduces cost

and increases the portability of the algorithm across multiple hardware configurations

Automatic mapping is a current research topic. Automatic mapping algorithms have been
published from Ptolemy-related research at the University of California, Berkeley and the
PARSA project at the University of Texas, Arlington. This effort would not attempt to
discover new mapping algorithms. We propose to produce a framework to allow flexible
algorithm selection for the mapping process. The resulting framework will allow
different mapping algorithms to be rapidly introduced and applied to software and
hardware to be mapped. Reference mapping algorithms will be implemented to verify the

framework’s utility.

Such a mapper starts with an algorithm represented as a graph in which nodes represent
computational steps and arcs represent data or control flow, and a hardware description in
which nodes represent computational elements (processors) and arcs represent data
pathways. Additional information representing operational parameters will be attached to
each node and arc to describe the performance or behavioral characteristics of each.
Software parameters include computational requirements, data size and shape
information, and similar. Hardware parameters include performance characteristics of

processing elements as well as hardware limitations such as memory capacity, and

23



communication fabric parameters such as bandwidth. latency, and routing characteristics.
The proposed automatic mapper will accept these two graphs as input and produce a
mapping of the software onto the hardware that meets the constraints imposed by each.
The goal of such a mapper is to produce an optimal mapping. Clearly, producing an
optimal map is an intractable problem. However, a sub-optimal solutions can be

achieved by using first-fit, simulated annealing and greedy algorithm models.

The intractable nature of this problem argues strongly for the availability of a framework
that allows rapid insertion of mapping algorithms for evaluation purposes. The utility of
such a framework is to provide a means for researchers to test and characterize heuristic
mapping algorithms to determine their viability without being required to implement new
testing harnesses for each mapping algorithm. Such a framework would include a
description syntax for hardware and software graphs including hardware and software

performance data as well as an API for graph interrogation.

As input, the framework will process ACL descriptions of both hardware and software.
Hardware and software performance data will initially be imported as separate,
supporting information using a syntax to be determined. Later, KRI and Mercury will

consider using ACL “properties” to carry hardware and software performance data.

KRI is interested in the “Entering the Data Domain” study because KRI faces an identical
challenge within its Embedded Khoros effort. As we have previously stated, Embedded
Khoros cannot afford the overhead associated with Distributed Data Services. Therefore,

KRI must define a Data Services subset that can meet embedded performance constraints.

Entering the Data Domain
The result of this research program is a public domain standards document. We hope that
commercial vendors will implement the standard at their own expense. We believe that

vendor implementations will follow at no cost to DARPA.

24



Appendix A.

Final presentation and demonstration at

DARPA Embedded Systems PI meeting

(PowerPoint Presentation)

25



*au| ‘swolsAg 19indwios AindJapy

w02 oW doinepy
oine uaiey

(1,20-2-2.6-2090€4 10B1U0D : /0-/6YVE)

6661 UdJe|\ ‘llemeH ‘Inep
| Bunesiy
lojebiisaauj jedioulid swaisAs pappaquig

26

s19indwo)
peppaqu3 9jgejeds 40} JUswuodIAug
~ uswdojanag :o:mu__n_a< suejel




smanis 1ahim

pappaguis no Juawhejdap 10) sunnuofe
10 Bunsa2y pur Juewidojpaap uoneLISHIOMN

Aunqgeynod

R

3
»
&
&
(7,)

27/28 7

"sjusauodwod
uojjesnbyuod pue
alemyos jo Ajjgesnay

"9JuBUdUIRW pue
‘uonjeziwndo ‘Buibbnqap
‘Buimwesboud jo aseqg

"?ouewioiad
jeonaloay] wajsAs

buiyseoidde souew.opiad
djqeuieiqo uonesjddy




"$]00} [nj1damod jo jJuswdojanap auyj
smojje buiieys uojjewnojul wasAs “sisAjeue pue furioyuow
0} 9jqeusawe ajow ale waisAs pajesbajul ue jo sojiadoid ¢

"Yum Aj30241p sa9jesjunwiwod ) sassaosoud
9y} 0} pajwi| 8q pjnoys abpajmouy wajsAs s jusuodwios y ¢

‘Ajjgeyod ,
pue j9)iew-o}-awi} Jo asuadxa ayj je ‘epod slwyjiobe o .
9y} 0] @Al BP0 UoHBIIUNWILWOI J0ssadoidiaul diy1oads
-uiojjejd Bunim uo papuadxs Bujeq si Loye yonw 0o

, "9po9
92.inos jejuanbas painquisip ul padejal Ajjusioye aq jou
ued suojjesjjdde paynquasip jo Ayxajdwoo siydeibodoy ayjy

. ‘juswdojanap uonesidde jeuolyipes;
Ul Saloualdop ulew Inoj ssaippe o} padojonap sem siieje




*319A9 31| uonesijdde
Jo saseyd uoneziwndo pue bngap ‘uoneinbiyuos ‘uonejuswajdwi ‘ubisop
wajlsAs ay} ssedwooud sjuaijo ayj ‘uonejuswajdwi [eiu s,Ainosspy up »

‘lapow uonesnbyuos uonesidde
9y} ssa20.4d pue ‘joeiajul ‘}ipa 0} auibua ay} 0] adepdUl YIIyM
S100} Judl|9 d|qepuedxa s,Siie[e] aJe aIN}ONJISelul 3|qISuadIxa siyj uodn ¢

‘Spuewwo? 3|}
1X3} 9|qepeal e se paleys pue paAes ag ued pue 3suadjsisiad |apow sapinoad
1duIos 1oV 8yl "Juswnaop (19v) abenbue] uoneinbiyuo) uonesnddy ue

JO W0} 3y; S| |apow 3y} JO MIJA dj(epedl uewny e sulejuiew Ajjueisuod sueje] + &
‘suiojjejd asemyos pue ajempiey
JuaIdyIp ssoloe suoedijdde jo Ajiqelsod Guimojje pue |00} juawdojanap
1o ‘uontesijdde ‘walsAs jo adA) uanaib e 10y )i Bunojie; ‘sui-bnjd saisuliuj pue

sonuewas [SpoN Yyiim papuaixa Ajjesjweuip aq ues [9pow uoneinbiyuos ayy ¢

‘auibua
uoljoesuel) bujjppow :o_ﬁm._:m_._:oo ay} S| ainjonujseljul ayj o} |eljua)

"suonjeojjdde Huissasoid abew pue jeubis pappaqua ajess
-ab.e| 10} JuswuoliAud uoledljdde paseq-jusuodwod e si ,,Sueje] ayL




layoune- layaune- o
9 10]B18U8Y) %9 J0jBIBUdY) | sebeyoed - -
uonesyddy uonesddy 19bie]

XINN @ 30VH

uoneinbyuod  [sosuiu; ebie; RN R T

TONUOW : ) o
aoueULIOIag sisAjeuy Buimaip pue :%muw%& o
® 1966nqgaq Bunipg 19V jedljaay

Eco_m_zm%m . _Emhm\sv_mmn_

T T TG e THR e T el AR T T YT Re Ve B G ap B bt g rar LTI B e L e

94n199)1y21y 9JeMyo




XISOd ‘SOl ‘SVd ‘IdIN :SIdV uonesjunwwod ajdinyy ¢

JIJdH Iney
je Juswdojanap Japun 2ds Ngl pue suoneisyiom gl ¢

XINN Pue g3JVH Apuauing
swa)sAs jabie} ajdnnyy ¢

poseq-eaep ¢

0’7 LN ®@SMOPUIA\ pue sLIejoS :sWwd)sAs “_._‘_OEQO_0>03 Q_Q_u_-._s_ .

abenbue| uonejuawsjdwi Jusuodwod asemyos ¢
wid)sAs bunesadQ ¢
IdV uonedunwwo? ssasoidiaju] ¢
[opouw bujwweibouad ¢
:JO Juspuadapul sl 19V ¢

walsAs j106.e) 1ad solsulul pue solUBWSS [9pOoW PAazZIWo}snd
spoddns (79Yy) abenbue uoneinbijuos uonesijddy ¢

32




siduos -
II3Ys pue sajiyadjew sadnpas pue ‘alemyos uopezijelyul ssjeujwi|y

ubisep Juauodwod ajgesnal Hujbeinosua ainyoniys sasodwyj

uondiiosap ooeIB)UI B|qRINIDXD - uonepijen aseLdiul pidey .

lojjuow dduew.oyad pue Jabbngep uoisiptedng ¢
sisAjeue pue Bujjiyosd aoes) souewIOLDd ¢
Jojesauab apoo-ojne
uopiezjuoiysuAs pue uonesunwwod 10ssasoadioyul
YuMm J9pjing uonedljdde 30vY 40j w218 M)yEad *
sdiysuopeja.
pue sajjjjus aiempJiey pue asemyjos s.uopedsjjdde ue Jnoge
uopjeuLiojul pazjjesjusd aleys o} sjooj Judid bunesadooos sejqeuy




"UOIINJJXI J3JE| JOJ 1M YUY | B SB PAIO]S 3ik Sa|(einodoxs

pue 1di1ag younety syl "uoneosijdde ayj uejs pue azijeijiuj o} 9y}

pasn e rpoune gy) sajeald ‘s9jgeInoaxa pajesausb wioj o dnpow T

uaby pue sajnpow jJusuodwod syujj (s1dids uni pue ‘sajudNe ‘SINPO

Juaby 1o} sajl) 934nos 9 ay) sajelauab ‘suoiosuuod aiemyos pue ssjnpow ...

alempley Huizjjeniu) 1o} uejd e SasIAGP ‘alaym SUNJ JeYM SaUlwWIdPRp
‘Bupjosyo 10449 ajeipaww sapiroad ‘uonesijdde ayy sejepijea pue
sazAjeue Jojesauay) ay] "uoneinbiyuod asempiey jabie) e ojuo aiemyos ay}

jo Buiddew ayj pue sjusuodwod siempiey pue aiemyos jo uojesnbyuos

9y} Juasaidai jey) sdiysuonejas pue sanua s,uonesidde ayy

Buiquosap Jaj9popy uoeinbiyuo ay) Wois MIIA B SOAIS004 J0jeIaUSD) By &

8poo 324nos BuiAjipow Inoyum payipow aq ues Abojodoy -
buissaosoud jjesanQ “uone|nws uonesijdde pue uonepijea asepdul Apes -
Mmoj|e Yyaiym sqgnjs sajnpowl aq ued sajnpouw ‘a@joAd ubisap ayj jo buluuibaq - -
9y} 1v "sjo9foid ainin} pue jJua1iNdU09 10} aSE( PO d|qesnal e sapino.d
Alojuaaul s|inpow sy | “pajessuab-one 1o Ajjenuew pajeass ssjnpow apod
92.1nos dyjoads-uonedijdde Jo ‘saielql] 3|jnpow a1emyos 3jqesnal wo.y

paule}qo ale uoljuyap adesjul 3y} 0} Buiwiojuos sanpoi mateduran |

"UaIlIM-13sn
10 |00} Jud]|0 ke Aq pajesauab aq Aew } ‘saibojodo) Buissaosoid aiemyog
pue aiemp.ieH ay) jo uonduasap e snid ‘sjuauodwiod asemyjos ay)
3y} jo pasudwiod sp '1ndpnnnp nepuayddn oy uy

Rl YA RS TAR AL eTORAN PN ag N AR 2 R s ATRIL e ) AR FOIaE AT - samy




uswdojanaqg
9po0YH 924n0g

9p0J dlwyiiob|y
jenjuanbeag

lojelauax)
uoneoiddy

lajapo
uolleinbyuon

i8pjing
uonesijddy
nioiemyead

Buimalp pue
buiipz 1ov

Abojodo
Buissasoid mg/mH




e phessa

TS aIed0Id 198 ¢

saouejsu| ajeal) ¢
SUOI}J2UU0)) *

SHOd ¢
sjusuodwo) ¢
s193[qQ alejoaq ¢

"sujewop ssoJoe buiddew i3y} pue suiewop -
alempley pue alemyos 3y} ui sjusuodwod

JO uopoduUoIBUIl 8Y) Buissaidxa -

10} abenbuen :o:n_._omwn _m‘_BuoquE 10V -

8&5.&5& mgw& -EAT 1380100
Eaaoo «».Sn.&.vu ey Suru- 1saon
, S o«.EE .!_.ri ..!o e

e Al _ns. s.ﬁuai z&.&g "} ) 01 anpovi a1eoep -
enbai _ EEn :81&;5...&1 Eu&:&.&iﬁi— §Suo§£:&-§85&_:o< APy 2iOH -
- EE ﬂ;.__:i A guﬁ_iaﬁcao el wumopé :&r Ao Tl E:uouax.:u&o o) } oy anpon AR -

Ser el i e bz-: Wi god Heod i Tk EE&niEtB..E:R i) Z«néﬂa L,
, oo™ Es.h#. .39.:3. .e&v!n.b.nrl..or L}

. &€ Frivos asehunooi u } Axdde -
L%..é«..&!igg. E.u..:&...a_.- FTYOS d%>W0u Ddd 3D NEN3I -
(G5 148 * IVOE™ 5% QIS LUSCT 1geuresnd -
{0mo LuSoYN + T1Y08"DVdN% G0 LUSOd smewesnd -
.ﬁo LSAVe * IVOR avads GO LUEOVY sesweied -
QY IMsaY Insweied -
@5 1UYLS imewnind -}
<.oa....., i!!l .

. spuswwod

U Uemvos: e
o .u5¢8|2.3514
Lo . . IR - .oudan nt.a._..elL

. {dwpe - SR A A o e . : : . 8|7 02IN0S
TSV Y, | P e ———————————— 8

_ swouesejey  BF awiria mweio | ~ LIRS
o souasmjey) - ,

36 . ¢

_SI00L” meiA -3p3  ejid




. PiuasoyewINOHMIDE ]

(108uuossau]) UoOBUUO e
(seoepaU]) SLOde
(s10ss99201d) 9INPOY\e

[9pow aiempieH

sued . SISYRS _Ouo
S R

AdeaqT  suoladd  MOPULK 3Py opea

F T .”__.,... (ured uoneounwwoy) uooauuo)e” f§
| — 7 | (l0001014) suod
....mm.. _ — .,.,..:_ _ - | (sseo01d ‘peaiy]) sinpopy

uoneoojje Aiowaw paseyge
UoleZ|uoIyduAs pue
UoNEIIUNWWOD lossaooidiau|e
:10} 9P09I SIJLIBUBYL)

w asemyos e | -

_rl § u suojiisnus) sued § sempen

‘ [ - [uondii5s3a aiempieH — 30V 10) (WLIEMEad |—

KsedqiT  suolldg  moputi  3pF  sLLg

T

uof1diI353Q 3IBMIOS — ¢IDVY 40) (W.LJIIeMNEId

—




*J9Yaune] 8y} wouy payoejap uonesijdde ay) a)noaxa 0} ISOOYD UBD J9SN dYL -

[

"s3|npouw 1asn Buindaxa ay) suels ‘Jsyoune] ayy Aq paroaaip Usym ¢ |

| Jayosunen] 0} )oeq snjejs spoday ¢

"'$98$9004d/speaJy] S9zjuoiyouAs pue dnjas Sa9IAIaS Hd| 10} SIPINOIH ¢
"ss9204d 9y} 40} jutod Anyua (Jurew ayy salddng o .

s.39 Buissasoad ayj uo yusby ayyL —

‘siseq .
bulobuo ue uo syuaby ay) Aq papirosd uonjewsopul uo paseq ¢, sasoydewsas
ouls, padoas Ajjeqolb bBuisn sajnpow jJuaby jo ssaiboid ay) sjosjuo)

"s9|npow sjuabe ayj 0} abessowr

Mels e saalb uay) ‘sassasoud uj spealy) sumeds pue ‘uoljeziuolysuis jusbe -
10} sQdl leqolb dn sjes ‘g9 Buisssooud yoes o} uo sabew) ajqeInssxs speo] ¢ .-
"suononJdisuy 1diIos younej ayj uo paseq sjduos juabe fenpiaipu; -

sojesauab pue aiempiey pappaquia ay) sazjjenul ‘3 Yyoune] ayj Ul Speay ¢ -

39 wa)sAg ayj uo Jdysuneqayy

.>=moo_ Buissaooud peaiy) sjelisayolo sjppow -
‘juabe [enpiaipul ajiym ‘uonjesiidde jeqolb ayy sejesisaysio soyosune] ayy .

STTRT S HOMET St T et LT e ANt e T e AL T FTE SRR AT ST SR R LT AEATICAN S T S e AL 4 VAR e MY 22

R i I i g S e

4 m



jusuodwo)n
2./eM1J0S

paysiul} uaym dn suea|d
spealy} sazjuoiyouAg
spealy) Jusauodwod s|je)d
uoljedIuNWIwo9
lossasouidiaiul dn s19g
dojelisayolo |eooT,,
juaby ssad0.d

19|9pOo\
uolneinbijuon

sjuabe sazjuoiyouisg
syuabe sje)
3D yoes 0} uo sabeuw

ajgeindoXo SpPeoT
101BJ1S9yd40 |eqols,,
layounen
uonesnddy

13

PP TR grege

B AL DR S Any

POV PR

030 Spamae- VL O T 00

- oyegy nonA

B T

A Ay

R P BN

Wi Y

wereT g

SRR T

L

P

L N

Ltemp et 44 AR

Az et

U R

B eatite




waysAs soindwod
-ihw snoauaboialay
e Ul s10ss92%0.4d
a|diiinw uo ejep jeqoib
MB3IA pue ‘sassaooud
JOJJUOI pue I0JIUOWN
10}IUO\] ddUew.IoLdd
» 19bbnqga(

wruoIsinRdng

- [sowmiz'y [eoeaniz 't Jaoseniz r [ ¢ 8y+ape0"pea] 2ad*1dvos | syoma 12000 aun| o

- |60tz [ eoreraz's | soseesz't [ ¢ suieanesd | - odd*ydeoe | eyosxa | Tz00q unan|

- |oseraz’y | soversz-1 | enveaz’t | ¢ WETH0 TSm0 odd*jan~oe | eymme | 1z00e omn| or

-+ |eovezgr 1 | eoveniz't [eoseniz x| ¢ GIETHP 14| odd'ydeoe| eyomm | 17006 ann| &

. Lo et eseRed s I M| - oo pdemad | - eynoewe | rzoos sun| s

) Cl: - 0BTHeedABNI IR MM | - oddttdead | eymee | TzooL g d L

. . pHopedae "R | - oddetonpe [ eynoeme | 1z009 srn| o
‘] cmrneped e IR W] odd*ydepe| eynome [ 12000 sun| cf §
- TENSRNT S IR M|~ 90d*1owpe | eynoee | 1zoor wan| v

- ygneR AR T M o 1avpe | eyroea | Trooe o] ¢
ypitearsTso | ood*ueams 1oy | Apeeu | tzo0g Ehed I

: . 1L raeped eI W] - odd*Tenpr | eanosse | 1z00z wn| 2
4TIy dTOR, (dTIR.: (- uopedo] . ebewy smels . Qid | eumN L)
et [ y] wewsn [ [ [ [ [ wsessoong |
i A . ol wop pm3  seweeij o
- 00# Ae(ds|q 5595014 UOISIAIANG , =1

‘wIsiujwioalap-uou

JO S324N0S pue S}I9Ud0q
9ouewuouad jJo uonosslep ayj oy
Kauejoyyye uonnoaxa uonesyjdde -
Jo uonoidep ajeinaoe .
suyoddns sisAjeue wapow-}sod
Buioes] jyuang :

(=]
<



‘suojjesjjdde papioddns
~slieje| pue papod-pueH dojaAsp o0} pasn uay} a1em sjusuodwos asay |

| IdV
uojjediunwiwod Jossaososdiajul ayl se (Idg) aaepsiul Buissed-obessayy

Buisn padojanap aisam ‘sjusuodwo 10

‘s9|npow alemyos a|qeniod

A AL M RIS e A R R T IT R AFe o KA (S IS I3 30 Ack

So|Joew pue
s1dios spoopuey

(Wwwodoe Wwo [dIN ‘Wwodpe Wwwod |din ‘wwodAw wwod 1dniidwod § : «J» OPOJPUEH l

opo) syeel Il

o

Auuwmhucmm jo

HINVEA AF oM €AW

JEpEY Binliac

- e s

W Y pey

AN eAre




Old-IdW/SHe|e L — g— Old-IdN POPOI-PUBH — ¢—
$10SS930.1d S10SS3920.1d

8 Oy 2€ v 91 8 . 1 4% 9S 8t 1] 4 (4 Ve 91 8
1 I 4 L o 1 [ L L | I Q

AL oo

\\ 009

"
o
(09s) awi] Aousje sweuq sy
(Sd014W) indybnoayy
42

<
o
=]
F

oct _ o001

LT T ARAR - G XM EY A AT Wil A TANTE 2 Rerie AR T DR DA Sat WAL QA WA AR B 3

JuajeT] awel] s pue SO.F_._.a




‘1onpouad jJusawdojanap uoine

PO B L Y T ey T By T O P R X N e T
P g A e RIAY b et Dt e e B i &.m..,w..,:.._ s WG SUSEy BTTR O) w. Era AL DL L ack JA Y . N

tetetent Wiy

"20-,6VVvd 199[o1d Aouaby sjosfoid yoseasay pasueapy asusyod oYy Aq ued u papunj pue _
swolsAg Jeindwo) Ainasspy Aq padojanap Sem JUBWIUOIIAUS ,, S|Ieje ] 8y ) “STUoWD PIMOUNJY - -
*Aj9ad1p sejesIUNWWOD }| WOYM 0] 3SOY) Jnoge Mouy|
o} Ajuo paau sjusuodwod ay) seasaym ‘uopeaslidde jjny ayy uj ssa9fheid
941 ||e 3y} Jnoqe ,,mouyj,, 0} papaau ,;sueje] Aq pasejdas  sulew,, ay| ¢
‘Aem ay)} sayjoows uonepijea asepdul Aieg ¢
"awi} ui ujod Aue je smalA aapoa)as sjuem sodojanap
Inq ‘anjeA jealb sey uopewsoju; uopesiidde jo Aloysodal jesjuas y ¢
"3j9A0 Juswdojansp ay} pue yaes Jo Ayjin ay}
Buroueyus Ajjeasb ‘joeiaul 0} syuailo JulolsIp Ajsnoinasd sS9|qeud sueje] ¢
juswiuodiaug AjAnonpoud ¢
"Juabe ssas0ad Aq pajoedwi Jou esuew.opsad
swnuni pue “4sysunej uonesjidde jusioy)a ue sey sueje] ‘pajsem bujaq
S aw} ayj aJ9ym 93s ued noA Ji Jsises yonw s uoneziwido ssuewIOLad ¢
"%66 < Aljiqerod sueje] jpliom 10apadwi ue ul ssaiboid smoje Aljiqelod ¢

SUOSS97] JuoWdO[oAa(q UOIIED]|

43

YV -
"yaseasal bujobuo jo snooy ay) sulewas speje]
"ou] ‘swdlsAg Jaindwo) Ainodsspy yum uonesoge|jor -

Ut NOLLYIWHOINI 8 SIWILSAS VHLVIN Aq padojonsp ‘JOVY 0} y2iemyead
dlidde jeojydeib ey 10} 21emaIPPIW Y} S1 SHElEL

et e RERTELT Sac o

:




DISTRIBUTION LIST

addresses number
of copies

RALPH KOHLER 2
AFRLZIFTC

26 ELECTRONICS PKWY

ROME NY 13441-4514

MERCURY COMPUTER SYSTEMS, INC.
199 RIVERNECK ROAD
CHELMSFORD MA 01824-2820

~

AFRL/JIFOIL 1
TECHNICAL LIBRARY

26 ELECTRONIC PKY

ROME NY 13441-4514

ATTENTION: DTIC-0CC 1
DEFENSE TECHNICAL INFO CENTER

8725 JOHN J. XINGMAN ROAD, STE 0944

FT. BELVOIR, VA 22D060-6218

DEFENSE ADVANCED RESEARCH 1
PROJECTS ABENCY

3701 NORTH FAIRFAX DRIVE

ARLINGTON VA 22203-1714

ATTN: NAN PFRIMMER 1
IIT RESZARCH INSTITUTE

231 MILL ST,

ROME, NY 13440

AFIT ACADEMIC LISRARY 1
AFIT/LDR, 2950 P.STREET C

AREA 3, 2LDG 642

WRIGHT-PATTERSON AF3 OH 45433-7765

ATTH: SMDC IM PL 1
US ARMY SPACE 8 MISSILE DEF CMD

P.0. 30X 1500

HUNTSVILLE AL 35837-3801

oL-1



TECHNICAL LIBRARY DD274(PL~-TS)
SPAWARSYSCEN

53560 HULL ST.

SAN DIEGO CA 92152-5001

COMMANDER, CODE 4TLOOOD
TECHNICAL LIBRARY, NAWC~WD
1 ADMINISTRATION CIRCLE
CHINA LAKE €A 93555-6100

CDR, US ARMY AVIATION % MISSILE CMD
REDSTONE SCIENTIFIC INFORMATION CTR
“ATTN: AMSAM=RD-08-R, (DOCUMENTS)
REDSTONE ARSENAL AL 35898-5000

REPORT LIBRARY

MS P364

LOS ALAMOS NATIONAL LABORATORY
LOS ALAMOS NM B7545

AFIWC/MSY
102 HALL BLVD, STE 315
SAN ANTONIO TX 78243-7016

USAF/AIR FORCE RESEARCH LABORATORY
AFRL/VSOSA(LIBRARY=-3LDG 1103)

5 WRIGHT DRIVE

HANSCOM AF2 MA 01731-300%

ATTN: <ZILEEN LADUKE/DA&A&D
MITRZ CORPORATION
202 BURLINGTON RD
3EDFORD MA 01730

QUSD(P)/DTSA/DUTD

ATTN: PATRICK &. SULLIVAN, JR.
400 ARMY NAVY DRIVE

SUIT:=Z 300

ARLINGTON VA 22202

DL~-2



MISSION
OF
AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of information systems science and
technology for aerospace command and control and its transition to air,
space, and ground systems to meet customer needs in the areas of Global
Awareness, Dynamic Planning and Execution, and Global Information
Exchange is the focus of this AFRL organization. The directorate’s areas
of investigation include a broad spectrum of information and fusion,
communication, collaborative environment and modeling and simulation,
defensive information warfare, and intelligent information systems

technologies.

9



